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Abstract

A wavelet propagating in a finely layered lossless medium is subject to apparent attenuation
that changes its shape. Can a sonic log be used to characterize this change? We show that
numerical simulations with the well-log as medium give an apparent attenuation or diffusion of
the pulse which is very different from the attenuation in the real medium, this is due to the
smoothing effect of the well-log tool. Based on a version of the O’Doherty-Anstey approximation
we derive an expression that reveals the role of the tool. Using a sonic log we verify the
theory and show how tool effects can be mitigated by deconvolution. We also propose a two-
scale stochastic model for the sonic log and a procedure for estimation of its parameters. One
application of sonic logs is exactly to quantify apparent attenuation and in this context our
results are important.

1 Introduction

The earth comprises heterogeneities on many scales and a wavelet traveling through the heteroge-
neous earth is transformed due to scattering associated with fine scale fluctuations in the medium
parameters. We refer to this phenomenon as apparent attenuation. Synthetic seismograms can be
used in order to describe such effects for a particular geology. Here we want to examine the conse-
quence of using a seismic well-log as a model for a layered medium in wave simulations. A second
objective is to derive a framework for estimation of the microscale parameters of the medium.

The analysis is based on a generalization of the O’Doherty-Anstey approximation. This ap-
proximation characterizes the transformation of the pulse shape based on a stochastic model for
the medium. The well-log tool alters the statistics of the fluctuations in the medium and the
O’Doherty-Anstey approximation reveals how this affects apparent attenuation. We illustrate with
computations based on a well-log from the North Sea and obtain excellent agreement with the
theory. Models for both the medium and the well-log tool are used in the analysis. For the tool we
use a model similar to that used in [7]. For the medium we introduce a two-scale stochastic model
and discuss estimation of its parameters. An important aspect of the estimation procedure is that
it takes the tool into account.

Realizing the importance of the approximation presented by O’Doherty and Anstey [11] a
number of authors have reexamined it and extended it to more general wave propagation scenarios
[1, 3,4, 6, 8,9, 12, 13, 17]. Here we consider acoustic wave propagation in a layered medium with
weak fluctuations. Based on the analysis in [8, 17], we obtain an approximation that reveals how
the tool affects the propagating wave. Note that apparent attenuation becomes important only for
relatively long propagation distances. As pointed out in [3], the O’Doherty-Anstey approximation
goes somewhat beyond averaging as in [2] in that it deals with such long propagation distances.
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That apparent attenuation effects are important in the seismic wave propagation context has been
shown for instance in [14, 15]. Marion et al. [10] present a study that also demonstrates the
importance of medium fluctuations at different scales. They affect the travel time and dispersion
of the wavelet. The authors explore approximations that characterize these effects. To apply these
however, one needs reliable information about the medium fluctuations. We show that information
about the fine scales are strongly corrupted by the tool and that this can lead to erroneous results
unless compensated for.

The outline of the paper is as follows. In Section 2 we discuss the models for the medium
and the tool. Next, in Section 3, we introduce the appropriate version of the O’Doherty-Anstey
approximation and discuss the role of the tool. Finally, we illustrate using numerical simulations
based on the North Sea log in Section 4.

2 Modeling and estimation

We consider acoustic wave propagation through a layered medium defined by

oz = po 2.1)
Vo forz<0

Viz) = Vi forkAz<z<(k+1)Az 0<k<N
Vn for NAz < z,

where z is depth coordinate, Az = .125m, p is the (constant) density and V the local speed of
sound. The V}’s are the velocities in the discrete sections. The medium is modeled as random and
Vi as a stochastic process. We denote by Vj the sonic log from the medium Vj. A plane-wave
impulse is impinging upon the medium at the surface z = 0. We are interested in its shape when
it has propagated to depth L = NAz, either in the medium Vj or in Vi, the medium defined by
the log.

Apparent attenuation is caused by the (fine scale) medium variations. We use the following
model random medium for these fluctuations

Vi = Vi(1+ eerexp(sXy)). (2.2)
Here, V}, is a ‘background’ medium modulation that varies on a macroscale, the scale corresponding
to L. The random fluctuations are defined by the stationary stochastic process Xj; and these
fluctuations define the microscale in our modeling. Note that the width of the propagating wavelet
is on this scale. The sequence X}, is taken to be a zero-mean unit variance Gaussian sequence. The
strength of the fluctuations are  ee; with e varying on the macroscale and € << 1. The positive
sequence ey, is scaled to unity in root mean square. Thus, we assume that the fluctuations are weak,
that is the small contrast case. The parameter s is a skewness parameter and the correlations of
X} are

E[XpXgyn] = exp(—n/l). (2.3)

We examine apparent attenuation in Vj and also in the medium defined by the log, Vj, and
look at how the attenuation differ for these media. The log is related to Vi by the model for the
tool
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with the weights w; adding to unity [7]. The parameters, w; and M, are modeled as being inde-
pendent of the recording location, with M corresponding to the physical length of the tool. Note
that the variations in Vj are slow relative to M, but that the fine scale fluctuations vary rapidly
relative to M.

In order to obtain realistic parameter values for the medium model (2.2) we estimate these using
a sonic log from the the Troll-field in the North Sea. This well-log and its estimation is discussed in
Appendix A. The moment estimators we present there are based on interface reflections coefficients
rather than the velocity observations themselves. The reflections are less sensitive to variations in
the macroscale parameters and give more robust estimates for the microscale medium parameters.
A second key aspect of the estimation is that the model for the tool is explicitly used. The resulting
parameter estimates are ¢ = .03, s = 1.1 & [ = 2. The small value of [ implies that the micro-scale
fluctuations occur on a very fine scale: = 0.5m.

3 Apparent attenuation and tool effects

In this section we use O’Doherty-Anstey theory to characterize the shape of the transmitted pulse,
the shape at depth L. = NAz after the pulse has traveled through the discrete medium. The
medium is statistically stationary. In the model (2.2) this entails that the macroscale parameters
Vi & ey, are constant. Note that only their mean square values are important for the apparent
attenuation phenomenon.

Denote the (discrete) pulse at the surface z = 0 for ug, the pulse is sampled (in time) at rate
AT = 2Az/Vy. Then the transmitted pulse shape at z = L can be characterized by

u;, ~ wugxHj as ¢ 0. (3.1)

In absence of microscale medium fluctuations the sequence Hy, = {Hp,(7)} is given by Hr(0) =1
and Hy, (i) = 0 for 7 # 0. Recall that € represents the magnitude of the medium fluctuations and is
assumed to be small. We derive (3.1) in Appendix B, where we also discuss the continuous case.
The function Hy, is deterministic, hence the transformation of the pulse shape due to the random
layering is to leading order a deterministic phenomenon. Note, however, that the travel time to
depth L contains a small random component, see for instance [17]. The vector Hyp, is a causal
‘pulse shaping filter’ and is determined by the medium statistics as we explain next. Let

E[(Vk = E[VE]) Vitn]

_— 2
Viir — V,

R k+1 — Vi
Vier + Vi

be correlation and reflection coefficients associated with Vj,. The covariances of the reflections are

an = FE[RpRpin] ~ —(Yn—1 = 27 + Yn41)/4- (3.3)



To leading order ag = (0 — v1)/2 is a first order difference and (3.3) in general a second order
central difference. Let A be a lower triangular (semi infinite) Toeplitz matrix whose first column
is [ag/2, a1, az,---]. Then the non-zero (causal) part of Hy, is the first column of the matrix

e NA (3.4)

with L = NAz. The pulse shaping filter Hp, can alternatively be expressed as

Hy, = ) png™ (3.5)
m=0

where p,, is a discrete Poisson distribution with parameter a = (ag/2)N > 0

pm = exp(—a)a™/ml. (3.6)
The sequence ¢ is defined by
0 forn <0
I = ;0—’7‘/”2 ~ 74‘*'—"‘1;3121'7" L otherwise.

In (3.5) ¢™* denotes m-fold convolution and ¢%* = y = {y;} is the sequence with yo = 1 and
y; = 0 for i # 1. Based on the representation (3.5), we make the following observation. If the
sequence {7,} is convexr for n > 1, then g is a positive sequence that can be interpreted as a
discrete probability distribution and H as the distribution of a random sum. By an application
of the central limit theorem, it follows that Hp, is close to the Gaussian distribution for large L. If
the sequence {7,} is not convex, there is cancellation in the convolutions ¢”* and the pulse shaping
filter H, does not approach the Gaussian bell shape.

The roughness of the medium is crucial in determining the apparent attenuation phenomenon
and this property is corrupted by the smoothing effect of the well-log tool. How is this seen in
(3.5)7 For typical media, for instance a Markovian model medium, the sequence {7z} will be
convex. However, replacing Vi by the log Vi entails that the sequence v = {¥n} is replaced by
~ *w * W to leading order; and this sequence is in general not convex for n > 1. Here w = {w;}
is the tool-averaging filter (2.4) and w = {w_;}. Consequently, the propagating pulse does not
approach the Gaussian pulse shape. Note also that the crucial parameter a in (3.6) will be much
smaller for the medium Vj. Thus, H, changes qualitatively due to the tool. We illustrate this in
the next section.

4 Simulations

We present results of numerical wave propagation in synthetic media. The simulation will be carried
out using a Goupillaud discretization of the medium. That is, a discretization into sections of equal
travel times. In the Goupillaud case the O’Doherty-Anstey approximation takes on a similar form
to the one presented in (3.4), see Appendix B and [4]. In all the cases we discuss, the source is an
impulse that probes the medium at the surface z = 0. We observe the transmitted pulse at depth

L = 4km and plot it relative to its first arrival time. To leading order the transmitted pulse will
be Hyp, as in (3.5).



We consider four different classes of media

Synthetic media

Vi -The synthetic medium, that is a realization from the model (2.2). The macroscale parameters,
V;. and ey, are taken to be constant. The pulse shaping depends on the microscale parameters
and we use € = .03,s = 1.1 & [ = 2. These values are estimated from the North Sea log as
discussed in Appendix A.

Vi -The synthetic log. This medium is defined by applying the tool model to the synthetic medium
as shown in (2.4), see also [7].

Real media

vk -The ‘real’ medium in the North Sea reservoir. Note that vy is not explicitly known, only the
logged version ¥y is available. However, we will use an approximation of vy that is obtained
by deconvolving with respect to the tool model.

Uk -The real well-log obtained from the North Sea reservoir as discussed in Appendix A.

In the sequel we show how replacing a medium by its logged version drastically changes the pulse
shaping, the apparent attenuation, due to medium fluctuations. We show this both for the real
data and the synthetic data and also how the O’Doherty-Anstey theory can be used to predict and
explain the drastic change.

In Section 4.1 we use several realizations from the model (2.2), several versions of Vj, to illus-
trate O’Doherty-Anstey pulse shaping in synthetic media that models vg. This also illustrates the
stabilization aspect of the O’Doherty-Anstey theory, that the transformation of the pulse shape to
leading order is deterministic. In Section 4.2 we show that the pulse shaping observed in the real
well-log, g, is very different from the one observed in the medium Vj, but close to the O’Doherty-
Anstey prediction of the pulse shaping in the medium Vi. In Section 4.3 we comment on the model
for the well-log tool and show that that deconvolving the real log, v, with respect to the tool
model gives a pulse shaping that is similar to the one seen in the medium Vj; as it should be if our
modeling of the medium and the well-log tool are appropriate. Finally, in Section 4.4 we illustrate
briefly how the pulse shaping or blurring of the pulse due to the fine scale medium fluctuations
approximately can be removed by deconvolution.

4.1 Pulse shaping and stabilization in synthetic media

First, we illustrate the remarkable stabilization aspect of the O’Doherty-Anstey theory. In Figure
4.1 we show 30 transmitted pulses corresponding to 30 different realizations of the medium Vj.
Despite the fact that the different pulses have traversed different media, different realizations of the
model (2.2), their shapes are very similar. This is the stabilization aspect of the O’Doherty-Anstey
theory, the transformation of the pulse shape is to leading order deterministic and depends only on
media statistics. The travel time on the other hand comprises a small random component. Note
that the pulses are plotted relative to their (random) first arrival time. The O’Doherty-Anstey
approximation, H, is shown by the stars, and agrees well with the simulations.



4 km impulse responses based on data and analysis
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Figure 4.1: The transmitted pulse shape obtained by propagating an impulse through realizations
of the synthetic medium, V. The 30 dotted lines correspond to different realizations of the medium,
all of length 4km. They agree well with the O’Doherty-Anstey approximation shown by the stars.
Note that all pulses are plotted relative to their first arrival time.

4.2 Pulse shaping in the logged medium

Next, we show how the pulse transformation becomes different when we replace the synthetic
medium V; with the synthetic log Vi, but similar to the one in the real log, ©;. The solid line
in Figure 4.2 is the pulse that has propagated through the actual log, 0y, the dashed line is the
O’Doherty-Anstey prediction of the transmitted pulse shape for the medium Vi, that is Hp, cal-
culated for this medium. Note the change in scale from the figure above. The medium has been
smoothened by the tool and as predicted by the theory of the previous section the transmitted
pulse shape is therefore very different; not smooth and bell shaped as above! Note, the excellent
agreement between the two pulse shapes in Figure 4.2. This is a strong indication that the above
modeling of the medium and the measurement tool are appropriate in the context of the wave
propagation problem at hand and that the O’Doherty-Anstey approximation well describes the
pulse transformation.

4 km impulse responses based on data and analysis
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Figure 4.2: The transmitted pulse shapes obtained by propagating an impulse through 4km of a
medium defined by the real log, 0%, compared with the O’Doherty-Anstey approximation for the
synthetic log, Vi, dashed line.

4.3 Pulse shaping in the deconvolved medium

Next, we illustrate how the smoothing of the medium by the tool can be compensated by deconvo-
lution and also motivate our choice for the well-log tool model.

In [7] the tool model corresponding to w o< [1 1 1 1 1] is being used. The length of this filter is
defined by the physical length of the tool. We first illustrate deconvolution with respect to these



values for the tool parameters. Based on the tool model (2.4), we design a least-squares deconvolu-
tion filter as described in Appendix C. We deconvolve the real log, ¢y, with this deconvolution filter.
Figure 4.3 shows the impulse response for the deconvolved medium. The ripples in the transmitted
pulse illustrate that the smoothing effect of the tool has not been appropriately compensated. As
above we probe the medium with an impulse and plot the transmitted pulse relative to its first
arrival time.

In Figure 4.4 we show the result when we deconvolve the North Sea log using slightly different
tool parameters, the parameters w o [1 1.15 1.3 1.15 1]. The ripples in the pulse that has propa-
gated through the tool deconvolved real log is now gone and the smoothing effect of the tool has
been effectively removed, hence, we use this latter tool model. The dashed line in the figure is the
O’Doherty-Anstey approximation of the transmitted pulse corresponding to the synthetic medium
Vi. Note that this approximation is remarkable similar to the pulse transmitted through the real
deconvolved log, which confirms that the tool effect has been compensated.

We do not pursue the problem of optimal estimation and deconvolution of the measurement
tool here. See for instance [18] for a discussion of a Bayesian deconvolution scheme that incorporate
a priori information about the stochastic structure of the underlying parameter in addition to a
model for the tool.
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Figure 4.3: The solid line is the transmitted pulse shape obtained by propagating an initially
impulsive-like signal through 4km of a medium defined by real well-log, v, deconvolved with respect
to the tool. The medium is therefore an approximation of the real medium v;. However, the ripples
in the transmitted pulse show that the smoothing effect of the tool has not been appropriately
compensated for.
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Figure 4.4: The solid line in the figure is defined as the previous figure, except that we used
slightly different values for the tool parameters. The pulse shape is smooth and similar to the
one in Figure 4.1, thus, the effects of the tool have been compensated for. The dashed line is the
O’Doherty-Anstey approximation of the transmitted pulse for the synthetic medium Vj.

Observe that, though there is ‘only one earth’ and one well-log, we modeled it as a random



medium. By modeling the microscale fluctuations in the log as a stochastic process and estimating
a few parameters in this model, we can accurately analyze and predict the apparent attenuation
associated with this one medium, and also similar geological structures. In [17] we show how
the pulse-shaping theory can be used to solve the inverse problem. That is, how to estimate the
parameters characterizing the microscale fluctuations based on observation of apparent attenuation
of the wave. In the next section we illustrate how one can deconvolve with respect to the pulse
shaping filter Hy, in order to recover the original wavelet.

4.4 Deconvolution of the pulse shaping

In seismic imaging we wish to identify the macroscopic features of the medium based on observations
of the transmitted or reflected signals. These are in general blurred by the fine scale heterogeneities.
We show in a very simple context how this blurring effect can be compensated by deconvolution
based on the pulse shaping formula (3.1).

In this section we choose the background profile so that the envelope function Vj equals 5
between 2000—2100m and 1 elsewhere. Thus, after the first arrival there will be multiples associated
with the macroscopic medium variations. The microscale parameters are chosen as above. In [12] it
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Figure 4.5: The figure illustrates that imbedded features are also being blurred according to the
pulse shaping formula and that deconvolution can compensate for the blurring. The solid line in
the top plot shows the transmitted signal for a medium with strong macroscopic variations, the
dashed line is the O’Doherty-Anstey prediction of the transmitted signal. Note that in this case the
probing pulse has the Gaussian bell shape. The dotted line in the figure is the transmitted pulse for
the background, without the fine scale structure. We see that the fine scale medium variations has
altered the pulse shape. In the bottom plot we deconvolve the transmitted signal with a filter that
is approximately the inverse of the pulse shaping effect and get the pulse shape shown by the solid
line. This pulse is much closer to the transmitted pulse associated with the background medium,
shown with a dotted line. The dashed line is the deconvolved O’Doherty-Anstey approximation.

was shown that the O’Doherty-Anstey theory extends to reflected signals This example illustrates
that the approximation indeed accurately predicts the pulse shaping both for the front and for



imbedded features, when we use a realistic model for the fine scale heterogeneities, moreover, that
blurring due to fine scale structure can be compensated for by deconvolution.

The transmitted signal is shown by the solid line in Figure 4.5, top plot. The dashed line shows
the corresponding O’Doherty-Anstey prediction. Note that in this example the source pulse has
the Gaussian bell shape. The dotted line corresponds to the transmitted pulse for the background
medium, without fluctuations but with the same macroscale envelope and travel times. We see
that the fluctuations have modified the pulse shape of the transmitted wave. The effect of the fine
scale structure is not negligible.

Next, we attempt to compensate for the blurring effect by convolving the transmitted pulse with
a filter which is an approximate inverse of the O’Doherty-Anstey pulse shaping effect as defined
by Hrp, in (3.1). The solid line in the bottom plot of Figure 4.5 is the deconvolved trace. It agrees
much better with the dotted line, the transmitted pulse associated with the background medium.
The dashed line is the deconvolved O’Doherty-Anstey prediction. The choice of the deconvolution
filter is described in Appendix D. Compensating for the blurring is an ill-posted problem so we
introduce a regularization in the deconvolution scheme, which means that some high frequency
components of the coherent features of the pulse are lost.

5 Summary and Conclusions

We have examined apparent attenuation in a medium defined by a well-log. A main observation
is that apparent attenuation, that is spreading of a pulse due to scattering associated with mi-
croscale parameter variation, in the medium defined by the well-log is very different from apparent
attenuation in the actual medium. A main result of the study is how a new interpretation of
the O’Doherty-Anstey approximation in terms of a random sum can be used to explain this phe-
nomenon. In this interpretation the crucial role of the well-log tool becomes clear, and we show
how to compensate for its effect. We also show how to compensate for apparent attenuation by a
deconvolution procedure. A main aspect of the study is that we use a real well-log, a sonic well-log
from the Troll field in the North Sea, to illustrate and confirm the analysis. We obtain excellent
agreement between the theoretical predictions derived from the O’Doherty-Anstey approximation
and simulations based on this log. In the paper we also introduce a stochastic model for the sonic
log and show how to estimate the parameters therein. A significant observation is that the corre-
lation range in this North Sea reservoir is very short, only on the order of one meter and hence on
the order of the averaging length of the tool. Another important observation is that for the wave
propagation scenario considered, it is sufficient to model the medium in terms of a two scale model
for an accurate description of multiple scattering effects. We also find that the tool model used in
[7] is appropriate for describing the action of the tool.

We believe that the above results are important in the context of generating synthetic seis-
mograms. Moreover, that our modeling and estimation of microscale parameters is of intrinsic
interest. These parameters determine not only apparent attenuation due to scattering, but also
the statistical structure of the incoherently reflected wave [1] as well as the localization length [16]
that determines the penetration depth of the pulse.
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A Estimation of well-log parameters

The model for the medium Vj is given in (2.2) and the associated well-log model, Vi, in (2.4).
We let the realization of Vj, be defined by the sonic log from Block 31/2 of the Troll-field in the
North Sea and denote this ©;. This log was kindly provided by Norsk-Hydro. The formation in
the Troll-field is assumed to represent a coastal deltaic environment comprising a series of stacked
prograding delta lobes resulting in a layered structure dipping about 2-6 degrees. The water depth
is about 200m and maximum reservoir depth is about 1700m. We use the observations in the depth
range 500 — 1500m. The medium used in the simulation was obtained by first reflecting and then
replicating this section.

The three parameters (¢, s,1) in (2.2) and (2.3) are the important ones in determining apparent
attenuation. We describe their estimation next. We base the estimators on the ‘log reflections’

P = (Ok+1 — Ok)/ (041 + Ok). (A1)
By forming the reflections in (A.1), we mitigate effects of macroscale parameter variations.

The moment estimators are based on comparing the statistics of 7; with the commensurable
quantities from the model, that is Ry = (‘7k+1 - vk)/(‘7k+1 + Vk) We consider respectively the
variogram and the histogram. In Figure A.1 the solid line in the top plot is the variogram of 7,
normalized at maximum lag. The variogram V of a sequence {7} is defined by

_ N (Fr = )
Vin) = 1/2>° ~ (A.2)
k=1

with N 4+ n being the length of the sequence. The two dotted lines show the statistics when
computed based on only the observations in the upper respectively lower halves of the well-log
section. The variogram of a realization of R} is shown by the dashed line. It corresponds to the
parameters ¢ = .03,s = 1.1 & [ = 2. The location of the max value of the variogram in the
figure corresponds to the length of the tool, 2 feet. In the bottom plot we show the histograms of
the two sequences. Note the long tails of the distribution of 7, that motivates modeling in terms
of a log-normal distribution as in (2.2). Before forming the histogram we normalized 7; by an
estimate of ce;. This quantity varies only on the macroscale and can be estimated in terms of a
moving average of 7. By simulation we found that the precision of the parameter estimates is
approximately 10% for € & s and 20% for [. In [17] we show that the correlation length itself, the
integral of the covariance function, is estimated with even higher accuracy.

B Prediction of pulse transformation

We present the O’Doherty-Anstey result that we use in Section 3. Let V(z) be the local speed of
sound as a function of depth and assume that the density is constant as above. We model V (z) as
a (stationary) stochastic process and denote

E(V() - EVEDVEE]

If ug(t) is the pulse shape at the surface z = 0, then the shape of the wave pulse when it arrives at
depth z =L is [17]
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Figure A.1: The figure exhibits some statistics associated with the (nondeconvolved) North Sea
sonic log and of a realization of the well-log model Vi. The top plot shows variograms of the
reflection coefficients. The solid line corresponds to the entire log section, the dotted lines to data
in upper/lower halves and the dashed line to a realization of the model. The correlation structure
seems to be stable with respect to depth, and furthermore it matches that of the model. The
interpretation of the second plot is similar, however, the histogram rather than the variogram has
been computed.

ur(t) ~ woxHr(t) as €0,

with € being the relative magnitude of the random fluctuations in V. The function Hy can be
characterized by

Hol) = 3 pa 000,

Here ¢™* denotes n-fold convolution, ¢°(f) = §(¢) a unit impulse, and p, is the discrete Poisson
distribution with parameter al where

a = —(07)/4
) 0 fort <0
12/V) = ")
q(t2/V) _% otherwise

If v(¢) is convex for ¢t > 0 then Hy, can be characterized as the distribution of a random sum and
approaches the Gaussian distribution for large L by the central limit theorem.

Consider next the discrete problem where V' is sampled at rate Az. Let v, = v(nAz) and use
the approximations

!

7 (0F) =~ (n1—70)/Az (B.1)
7' (nAz) (Yn=1 = 290 + Vn41)/ (A2)?,

Q
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then we arrive at the discrete representation (3.5) of Hy with sampling interval 2Az/V. In [4]
the O’Doherty-Anstey approximation is derived for a Goupillaud or equal travel time discretized
medium. This approximation can be rewritten in the form (3.5) only that then 7, represents the
correlations of the velocities in the equal travel time sections. However, for a weakly heterogeneous

medium with small fluctuations this statistics is y; to leading order in € when the travel time of a
section is AT = Az/V.

C Tool deconvolution

We describe the procedure for deconvolving with respect to the tool. The well-log observations are
only weakly correlated and we choose the approximate ‘inverse’ of the tool as the solution to the
Wiener-Hopf equations. Let d = [dy, - -,dps] be the coefficients of the deconvolution filter, they
solve Ad = b. The vector b is the vector of tool coefficients w, as in (2.4), padded with zeros. The
matrix A is a symmetric Toeplitz matrix. The 7’th entry of the first row of A is the i’th covariance
coefficient associated with w, that is

J

The dimensions of of A is 20 x 20. Then the length of the deconvolution filter is 4 times that of
the measurement filter.

D Deconvolution of pulse shaping

We present the deconvolution filter that we use in Section 4 to remove or mitigate the blurring of
the pulse caused by the fine scale random fluctuations in the medium parameters. The transmitted
pulse at depth L can to leading order be characterized by

wy, ~ u.xHjp as ¢l 0

with u. being the transmitted pulse in the deterministic or effective medium, the medium with-
out the random fluctuations. Thus, to remove the burring effect caused by the random medium
fluctuations we deconvolve with respect to Hj. For the purpose of the illustration we choose the
deconvolution filter as the least-squares solution of the system obtained by requiring the convolution
of the O’Doherty-Anstey pulse shaping filter, Hy,, with the deconvolution filter to be an impulse.
The vector v of filter coefficients is the least-squares solution of ‘Av = b’, with b being a 5n x 1
vector whose coeflicients are equal to zero apart from the n’th entry which is 1. The top 3n X 2n
part of A is a lower triangular Toeplitz matrix whose columns contain the coefficients of the pulse
shaping filter. The bottom part, introduced for regularization, much as in [5] page 140, is defined
as A times the identity matrix. We choose A = .1, about the relative strength of the fluctuations
in the transmitted trace, and a value for n corresponding to the support of the deconvolution filter
being 50m, roughly twice the spread of the features in the trace.
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